
1

Introduction to Database
Systems

CSE 444

Lecture #10
Feb 7 2001

2

Announcements
aCourse Project MileStone2 due today
aChange in Deadlines
`Homework#3 due on Feb 21
`Project Report now due on Feb 28

aHW#2 has been linked
`Constraints, Triggers, Security, Transactions

aMidTerm grading in progress
`Feedback?…

Concurrency Control

Reading: Sec 7.2, 9.1-9.3,9.4.1,
9.4.2,9.5, 9.6.3,10.3.1,10.3.2

4

Why Have Concurrent
Processes?

aBetter throughput, response time
aDone via better utilization of resources:
`While one process is doing a disk read, another can

be using the CPU or reading another disk.

aDANGER DANGER! Concurrency could lead
to incorrectness!
`Must carefully manage concurrent data access.
`There’s (much!) more here than the usual OS tricks!

5

Transactions

aBasic concurrency/recovery concept: a
transaction (Xact).
`A sequence of many actions which are

considered to be one atomic unit of work.

aDBMS “actions”:
`(disk) reads, (disk) writes

6

The ACID Properties

aA tomicity: All actions in the Xact happen, or
none happen
`Account Transfer, Withdraw cash from ATM

aC onsistency: If each Xact is consistent, and
the DB starts consistent, it ends up consistent

a I solation: Execution of one Xact is isolated
from that of other Xacts
`Account Withdrawal

aD urability: If a Xact commits, its effects persist
`Electronic Fund Transfer

2

7

Passing the ACID Test

aConcurrency Control
`Guarantees Isolation

aLogging and Recovery
`Guarantees Atomicity and Durability.

aWe’ll do C. C. first:
`What is acceptable behavior?
`What problems could arise?
`How do we guarantee acceptable behavior?

8

Notation

aT1: Read(A,t), t:=t+100, Write(A,t),
Read(B,t), t:= t + 300, Write(B,t)
aT2: Read(A,s), s:=s*2, Write(A,s),

Read(B,s), S:=s*2, Write(B,s)
aT1: R1(A), W1(A), R1(B), W1(B)
aT2: R2(A), W2(A), R2(B), W2(B)
aWhat kind of interleaving makes sense?

9

Schedules

aSchedule: An interleaving of actions
from a set of Xacts, where the actions
of any 1 Xact are in the original order.
`Represents some actual sequence of

database actions.
`Example: R1(A), W1(A), R2(B), W2(B),

R1(C), W1(C)
`In a complete schedule, each Xact ends in

commit or abort.
aInitial State + Schedule → Final State

T1 T2

R(A)

W(A)

R(B)

W(B)

R(C)

W(C)

10

Acceptable Schedules

aOne sensible “isolated, consistent” schedule:
`Run Xacts one at a time, in a series.
`This is called a serial schedule.
`NOTE: Different serial schedules can have different

final states; all are “OK” -- DBMS makes no guarantees
about the order in which concurrently submitted Xacts
are executed.

aSerializable schedules:
`Final state is what some serial schedule would have

produced.
`Aborted Xacts are not part of schedule; ignore them for

now (they are made to `disappear’ by using logging).

11

Serializability
Violations

aTwo actions may conflict when 2
xacts access the same item:

aDirty Read (WR Conflict)
`Result is not equal to any serial

execution!
`T2 reads what T1 wrote, but it

shouldn’t have!!
`T1 still active!

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit

transfer
$100 from
A to B

add 6%
interest to
A & B

Database is
inconsistent!

12

Example: Dirty Read

aT1: Transfer $100 from A to B
aT2: Increment A and B by 6%
aConsider schedule
aR1(A) W1(A) R2(A) R2(B) W2(A) W2(B)

R1(B) W1(B)

3

13

Serializability
Violations (Contd.)
aUnrepeatable Read (RW Conflict)

aLost Update (WW Conflict)

T1: R(A), R(A), C
T2: R(A), W(A), C

T1: W(A), W(B), C
T2: W(A), W(B), C

14

Examples: Unrepeatable
Read/Lost Update

aUnrepeatable Read
`T1: Increment A; T2: Decrement A
`R1(A) R2(A) W1(A) W2(A)

aLost Update/Blind Write
`T1: Set salary of A,B to $10000
`T2: Set salary of A,B to $30000
`W1(A) W2(A) W2(B) W1(B)

15

Checking for Serializability
aConflict: A pair of consecutive actions in a

schedule such that
`If their order is changed, then at least one of the

transactions may change
aNon Conflicting Swaps
`Unless actions within the same transaction
`Unless actions on the same object
`Unless one of the actions is a Write
⌧WW: Wi(X), Wj(X)
⌧RW: Ri(X), Wj(X)

16

Conflict Serializability

aGuarantees serializability
a2 schedules are conflict equivalent if:
`they have the same lists of actions, and
`each pair of conflicting actions is ordered in the same

way.

aA schedule is conflict serializable if it is conflict
equivalent to a serial schedule.
`Note: Some serializable schedules are not conflict

serializable!

17

Example

aExample 9.6 from Text
aR1(A), W1(A), R2(A), W2(A), R1(B),

W1(B), R2(B), W2(B)

18

Example

aAll serializable schedules do not need to
be conflict serializable
aPage 478 of Text
aS1: W1(Y), W1(X), W2(Y), W2(X), W3(X)
aS2: W1(Y), W2(Y), W2(X), W1(X), W3(X)

4

19

Test for Conflict Serializability:
Precedence Graph

aA Precedence (or Serializability) graph:
`Node for each committed Xact.
`Arc from Ti to Tj if there is an action of Ti precedes

and “conflicts” with an action of Tj
⌧Ai before Aj
⌧Ai and Aj involve the same database element
⌧Either Ai or Aj is a WRITE

aTheorem 1: A schedule is conflict serializable iff
its precedence graph is acyclic.

20

Example: Precedence
Graph
aT1 transfers $100 from A to B, T2 adds

6%
`R1(A), W1(A), R2(A), W2(A), R2(B), W2(B),

R1(B), W1(B)

T1 T2

21

Example: Precedence
Graph

aR1(A), W1(A), R2(A), W2(A), R1(B),
W1(B), R2(B), W2(B)
aIs it conflict serializable?

22

Isolation Level

aCaptures visibility across transactions
aCorrect/Strongest Isolation Level
`Serializable
`Implemented through conflict serializability
⌧Tested using precedence graph

aWeaker Isolation level
`Dirty Read (RW)
`Unrepeatable Read (WR)

aChoice of isolation level exposed through SQL
`Discussed later in the lecture

23

Implementation of
Serializability

24

Locking

aConcurrency control usually done via locking.
aLock info maintained by a “lock manager”:
`Stores (XID, RID, Mode) triples.
⌧Mode ∈ {S,X}
⌧S for readers; X for writers

aSteps
`Acquire Lock
⌧If a Xact can’t get a lock, it is suspended on a wait queue

`Release Lock

aThis is a simplistic view

5

25

Granting Lock Requests:
Lock Compatibility

-- S X

--

S

X

√

√

√

√ √

√

LOCK REQUESTED

L
O
C
K

H
E
L
D

26

Two-Phase Locking (2PL)

a2PL:
`If T wants to read an object, first obtains an

S lock.
`If T wants to modify an object, first obtains X

lock.
`If T releases any lock, it can acquire no new

locks!
aLocks are automatically obtained by DBMS.
aGuarantees serializability

27

Growing and Shrinking
Phases of 2PL

lock point

growing phase

shrinking
phase

Time

No. of Locks

28

Strict 2PL

aStrict 2PL:
`If T wants to read an object, first obtains an

S lock.
`If T wants to modify an object, first obtains X

lock.
`Hold all locks until end of transaction.

aGuarantees serializability

Time

of
locks

29

Conflict Serializability &
2PL

aTheorem 2: 2PL ensures that the
precedence graph of the schedule
will be acyclic
`Guarantees conflict serializability (and

serializability)
aStrict 2PL improves on this by ensuring

recoverable schedules
`More on Recovery in the next lecture

30

Example

aT1: R1(A), R1(B), W1(B)
aT2: R2(A), R2(B)
aSchedule:
aS1(A), R1(A), S2(A), R2(A), S2(B), R2(B),

X1(B)-denied, U2(A), U2(B), X1(B), R1(B),
W1(B), U1(A), U2(B)

6

31

Deadlocks

aDeadlock: A set of lock requests waiting
for each other
aSystem intervention necessary
a2PL cannot prevent deadlocks
aBreak deadlock by aborting one of the

transactions

32

Example

aConsider the sequence of actions:
`R1(X) R2(Y) W2(X) W1(Y)

33

Detecting Deadlock

aTimeout
aGraph-Based Detection (Chapter 10.3.1-.2)
`Build a waits-for graph
⌧Node = Transaction
⌧Add Edge = Waiting situation; edge(T1,T2) if T1 is waiting

on a lock held by T1
⌧Delete Edge = Unblocking
⌧Cycle = Deadlock
⌧Check periodically for cycles

aExample: R1(X) R2(Y) W2(X) W1(Y)

34

The Phantom Problem

aT1 locks all pages containing sailor records
with rating = 1, and finds oldest sailor (say,
age = 71).

aT2 inserts a new sailor; rating = 1, age = 96.
aT2 deletes oldest sailor with rating = 2 (and,

say, age = 80), and commits.
aT1 now locks all pages containing sailor

records with rating = 2, and finds oldest (say,
age = 63)

35

Phantom Problem: Analysis

aThe schedule is not serial but 2PL would allow
such a schedule?

aT1 implicitly assumes that it has locked the set
of all sailor records with rating = 1.
`Assumption only holds if no sailor records are

added while T1 is executing!
`The sailor with rating 1, age 96 is a phantom tuple

aObservation
`Ensure that the “right” objects are locked
`E.g., use predicate locks
`No change in 2PL needed

36

Implementing Locking

aNeeds to execute Lock and Unlock as
atomic operations
aNeeds to be very fast ~100 instructions
aLock Table
`Low-level data structure in memory (not SQL

Table!)
`Implemented as a hash table

7

37

Issues in Managing Locks

aMulti-granularity locking
`Concurrency v.s. locking overhead
`Intention locks on higher-level objects
`Lock Escalation

aHot spots
`Minimize lock duration

38

SQL-92 Syntax for
Transactions

aStart Transaction: No explicit statement.
Implicitly started
`By a SQL statement
`TP monitor (agents other than application

programs)

aEnd Transaction:
`By COMMIT or ROLLBACK
`By external agents

39

SQL-92: Setting the
Properties of Transactions

aSET TRANSACTION
`[READ ONLY | READ WRITE]
`ISOLATION LEVEL
[READ UNCOMMITTED | SERIALIZABLE |

REPEATABLE READ | READ COMMITTED]
`DIAGNOSTICS SIZE
Value_Specification

40

Explanation of Isolation
Levels
aRead Uncommitted
`Can see uncommitted changes of other transactions
`Dirty Read, Unrepeatable Read
`Recommended only for statistical functions

aRead Committed
`Can see committed changes of other transactions
`No Dirty read, but unrepeatable read possible
`Acceptable for query/decision-support

aRepeatable Read
`No dirty or unrepeatable read
`May exhibit phantom phenomenon

aSerializable

41

Implementation of
Isolation Levels

ISOLATION
LEVEL

DIRTY
READ

UNREPEATABLE
READ PHANTOM IMPLEMENTATION

Read
Uncommitted Y Y Y No S locks; writers must run

at higher levels

Read
Committed N Y Y Strict 2PL X locks; S locks

released anytime

Repeatable
Reads N N Y Strict 2PL on data

Serializable N N N Strict 2PL on data and
indices (or predicate locking)

42

Summary of Concurrency
Control

aConcurrency control key to a DBMS.
aTransactions and the ACID properties:
`I handled by concurrency control.
`A & D coming soon with logging & recovery.

aConflicts arise when two Xacts access the
same object, and one of the Xacts is
modifying it.

aSerial execution is our model of correctness.

8

43

Summary of Concurrency
Control (Contd.)
aSerializability allows us to “simulate” serial

execution with better performance.
a2PL: A simple mechanism to get serializability.
aLock manager module automates 2PL
`Lock table is a big main-mem hash table

aDeadlocks are possible, and typically a
deadlock detector is used to solve the
problem.

