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Introduction to Database 
Systems

CSE 444

Lecture #10
Feb 7 2001
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Announcements
aCourse Project MileStone2 due today
aChange in Deadlines
`Homework#3 due on Feb 21
`Project Report now due on Feb 28

aHW#2 has been linked
`Constraints, Triggers, Security, Transactions

aMidTerm grading in progress
`Feedback?…

Concurrency Control

Reading: Sec 7.2, 9.1-9.3,9.4.1, 
9.4.2,9.5, 9.6.3,10.3.1,10.3.2
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Why Have Concurrent 
Processes?

aBetter throughput, response time
aDone via better utilization of resources:
`While one process is doing a disk read, another can 

be using the CPU or reading another disk.

aDANGER DANGER! Concurrency could lead 
to incorrectness!
`Must carefully manage concurrent data access.
`There’s (much!) more here than the usual OS tricks!
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Transactions

aBasic concurrency/recovery concept: a
transaction (Xact).
`A sequence of many actions which are 

considered to be one atomic unit of work.

aDBMS “actions”:
`(disk) reads, (disk) writes
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The ACID Properties

aA tomicity: All actions in the Xact happen, or 
none happen
`Account Transfer, Withdraw cash from ATM

aC onsistency: If each Xact is consistent, and 
the DB starts consistent, it ends up consistent

a I solation: Execution of one Xact is isolated 
from that of other Xacts
`Account Withdrawal

aD urability: If a Xact commits, its effects persist
`Electronic Fund Transfer
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Passing the ACID Test

aConcurrency Control
`Guarantees Isolation

aLogging and Recovery
`Guarantees Atomicity and Durability.

aWe’ll do C. C. first:
`What is acceptable behavior?
`What problems could arise?
`How do we guarantee acceptable behavior?
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Notation

aT1: Read(A,t), t:=t+100, Write(A,t), 
Read(B,t), t:= t + 300, Write(B,t)
aT2: Read(A,s), s:=s*2, Write(A,s), 

Read(B,s), S:=s*2, Write(B,s)
aT1: R1(A), W1(A), R1(B), W1(B)
aT2: R2(A), W2(A), R2(B), W2(B)
aWhat kind of interleaving makes sense?
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Schedules

aSchedule: An interleaving of actions 
from a set of Xacts, where the actions 
of any 1 Xact are in the original order.
`Represents some actual sequence of 

database actions.
`Example: R1(A), W1(A), R2(B), W2(B), 

R1(C), W1(C)
`In a complete schedule, each Xact ends in 

commit or abort.
aInitial State + Schedule → Final State

T1 T2

R(A)

W(A)

R(B)

W(B)

R(C)

W(C)
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Acceptable Schedules

aOne sensible “isolated, consistent” schedule:
`Run Xacts one at a time, in a series.
`This is called a serial schedule.
`NOTE: Different serial schedules can have different 

final states;  all are “OK” -- DBMS makes no guarantees 
about the order in which concurrently submitted Xacts 
are executed.

aSerializable schedules:
`Final state is what some serial schedule would have 

produced.
`Aborted Xacts are not part of schedule; ignore them for 

now (they are made to `disappear’ by using logging).
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Serializability 
Violations

aTwo actions may conflict when 2 
xacts access the same item:

aDirty Read (WR Conflict)
`Result is not equal to any serial 

execution!
`T2 reads what T1 wrote, but it 

shouldn’t have!!
`T1 still active!

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit

transfer
$100 from
A to B

add 6%
interest to
A & B

Database is
inconsistent!
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Example: Dirty Read

aT1: Transfer $100 from A to B
aT2: Increment A and B by 6%
aConsider schedule
aR1(A) W1(A) R2(A) R2(B) W2(A) W2(B) 

R1(B) W1(B) 
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Serializability 
Violations (Contd.)
aUnrepeatable Read (RW Conflict)

aLost Update (WW Conflict) 

T1: R(A), R(A), C
T2: R(A), W(A), C

T1: W(A), W(B), C
T2: W(A), W(B), C
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Examples: Unrepeatable 
Read/Lost Update

aUnrepeatable Read 
`T1: Increment A; T2: Decrement A
`R1(A) R2(A) W1(A) W2(A)

aLost Update/Blind Write
`T1: Set salary of A,B to $10000
`T2: Set salary of A,B to $30000
`W1(A) W2(A) W2(B) W1(B)
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Checking for Serializability
aConflict: A pair of consecutive actions in a 

schedule such that
`If their order is changed, then at least one of the 

transactions may change
aNon Conflicting Swaps
`Unless actions within the same transaction
`Unless actions on the same object
`Unless one of the actions is a Write
⌧WW: Wi(X), Wj(X)
⌧RW: Ri(X), Wj(X)
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Conflict Serializability

aGuarantees serializability
a2 schedules are conflict equivalent if:
`they have the same lists of actions, and
`each pair of conflicting actions is ordered in the same 

way.

aA schedule is conflict serializable if it is conflict 
equivalent to a serial schedule.
`Note: Some serializable schedules are not conflict 

serializable!
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Example 

aExample 9.6 from Text
aR1(A), W1(A), R2(A), W2(A), R1(B), 

W1(B), R2(B), W2(B)
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Example

aAll serializable schedules do not need to 
be conflict serializable
aPage 478 of Text
aS1: W1(Y), W1(X), W2(Y), W2(X), W3(X)
aS2: W1(Y), W2(Y), W2(X), W1(X), W3(X)
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Test for Conflict Serializability: 
Precedence Graph

aA Precedence (or Serializability) graph:
`Node for each committed Xact.
`Arc from Ti to Tj if there is an action of Ti precedes 

and “conflicts” with an action of Tj
⌧Ai before Aj
⌧Ai and Aj involve the same database element
⌧Either Ai or Aj is a WRITE

aTheorem 1: A schedule is conflict serializable iff
its precedence graph is acyclic.
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Example: Precedence 
Graph
aT1 transfers $100 from A to B, T2 adds 

6%
`R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), 

R1(B), W1(B)

T1 T2
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Example: Precedence 
Graph 

aR1(A), W1(A), R2(A), W2(A), R1(B), 
W1(B), R2(B), W2(B)
aIs it conflict serializable?
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Isolation Level

aCaptures visibility across transactions
aCorrect/Strongest Isolation Level
`Serializable
`Implemented through conflict serializability
⌧Tested using precedence graph

aWeaker Isolation level
`Dirty Read (RW)
`Unrepeatable Read (WR)

aChoice of isolation level exposed through SQL
`Discussed later in the lecture
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Implementation of 
Serializability
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Locking

aConcurrency control usually done via locking.
aLock info maintained by a “lock manager”:
`Stores (XID, RID, Mode) triples. 
⌧Mode ∈ {S,X}
⌧S for readers; X for writers

aSteps
`Acquire Lock
⌧If a Xact can’t get a lock, it is suspended on a wait queue

`Release Lock

aThis is a simplistic view
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Granting Lock Requests: 
Lock Compatibility

-- S X

--

S

X

√

√

√
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√

LOCK REQUESTED

L
O
C
K

H
E
L
D
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Two-Phase Locking (2PL)

a2PL:
`If T wants to read an object, first obtains an 

S lock.
`If T wants to modify an object, first obtains X 

lock.
`If T releases any lock, it can acquire no new 

locks!
aLocks are automatically obtained by DBMS.
aGuarantees serializability
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Growing and Shrinking 
Phases of 2PL

lock point

growing phase

shrinking
phase

Time

No. of Locks
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Strict 2PL

aStrict 2PL:
`If T wants to read an object, first obtains an 

S lock.
`If T wants to modify an object, first obtains X 

lock.
`Hold all locks until end of transaction.

aGuarantees serializability

Time

# of
locks
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Conflict Serializability & 
2PL

aTheorem 2: 2PL ensures that the 
precedence graph of the schedule        
will be acyclic 
`Guarantees conflict serializability (and 

serializability)
aStrict 2PL improves on this by ensuring 

recoverable schedules
`More on Recovery in the next lecture
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Example

aT1: R1(A), R1(B), W1(B)
aT2: R2(A), R2(B)
aSchedule:
aS1(A), R1(A), S2(A), R2(A), S2(B), R2(B), 

X1(B)-denied, U2(A), U2(B), X1(B), R1(B), 
W1(B), U1(A), U2(B)
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Deadlocks

aDeadlock: A set of lock requests waiting 
for each other
aSystem intervention necessary
a2PL cannot prevent deadlocks
aBreak deadlock by aborting one of the 

transactions
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Example

aConsider the sequence of actions:
`R1(X) R2(Y) W2(X) W1(Y)
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Detecting Deadlock

aTimeout
aGraph-Based Detection (Chapter 10.3.1-.2)
`Build a waits-for graph
⌧Node = Transaction
⌧Add Edge = Waiting situation; edge(T1,T2) if T1 is waiting 

on a lock held by T1
⌧Delete Edge = Unblocking
⌧Cycle = Deadlock
⌧Check periodically for cycles

aExample: R1(X) R2(Y) W2(X) W1(Y)
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The Phantom Problem

aT1 locks all pages containing sailor records 
with rating = 1, and finds oldest sailor (say, 
age = 71).

aT2 inserts a new sailor; rating = 1, age = 96.
aT2 deletes oldest sailor with rating = 2 (and, 

say, age = 80), and commits.
aT1 now locks all pages containing sailor 

records with rating = 2, and finds oldest (say, 
age = 63)
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Phantom Problem: Analysis

aThe schedule is not serial but 2PL would allow 
such a schedule?

aT1 implicitly assumes that it has locked the set 
of all sailor records with  rating = 1.
`Assumption only holds if no sailor records are 

added while T1 is executing!
`The sailor with rating 1, age 96 is a phantom tuple

aObservation
`Ensure that the “right” objects are locked
`E.g., use predicate locks
`No change in 2PL needed

36

Implementing Locking

aNeeds to execute Lock and Unlock as 
atomic operations
aNeeds to be very fast ~100 instructions
aLock Table
`Low-level data structure in memory (not SQL 

Table!)
`Implemented as a hash table 
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Issues in Managing Locks

aMulti-granularity locking
`Concurrency v.s. locking overhead
`Intention locks on higher-level objects
`Lock Escalation

aHot spots
`Minimize lock duration
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SQL-92 Syntax for 
Transactions

aStart Transaction: No explicit statement. 
Implicitly started
`By a SQL statement
`TP monitor (agents other than application 

programs)

aEnd Transaction: 
`By COMMIT or ROLLBACK
`By external agents
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SQL-92: Setting the 
Properties of Transactions

aSET TRANSACTION
`[READ ONLY | READ WRITE]
`ISOLATION LEVEL
[READ UNCOMMITTED | SERIALIZABLE | 

REPEATABLE READ | READ COMMITTED]
`DIAGNOSTICS SIZE
Value_Specification
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Explanation of Isolation 
Levels
aRead Uncommitted
`Can see uncommitted changes of other transactions
`Dirty Read, Unrepeatable Read
`Recommended only for statistical functions

aRead Committed
`Can see committed changes of other transactions
`No Dirty read, but unrepeatable read possible
`Acceptable for query/decision-support

aRepeatable Read
`No dirty or unrepeatable read
`May exhibit phantom phenomenon

aSerializable
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Implementation of 
Isolation Levels

ISOLATION
LEVEL

DIRTY
READ

UNREPEATABLE
READ PHANTOM IMPLEMENTATION

Read
Uncommitted Y Y Y No S locks; writers must run

at higher levels

Read
Committed N Y Y Strict 2PL X locks; S locks

released anytime

Repeatable
Reads N N Y Strict 2PL on data

Serializable N N N Strict 2PL on data and
indices (or predicate locking)
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Summary of Concurrency 
Control

aConcurrency control key to a DBMS.
aTransactions and the ACID properties:
`I handled by concurrency control.
`A & D coming soon with logging & recovery.

aConflicts arise when two Xacts access the 
same object, and one of the Xacts is 
modifying it.

aSerial execution is our model of correctness.
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Summary of Concurrency 
Control (Contd.)
aSerializability allows us to “simulate” serial 

execution with better performance. 
a2PL: A simple mechanism to get serializability.
aLock manager module automates 2PL 
`Lock table is a big main-mem hash table

aDeadlocks are possible, and typically a 
deadlock detector is used to solve the 
problem.


