Introduction to Database
Systems

CSE 444

Lecture #10
Feb 7 2001

Announcements

3 Course Project MileStone2 due today
Change in Deadlines
AHomework#3 due on Feb 21
=Project Report now due on Feb 28
¥$HW#2 has been linked
Constraints, Triggers, Security, Transactions
¥ MidTerm grading in progress
~Feedback?...

Concurrency Control

Reading: Sec 7.2, 9.1-9.3,9.4.1,
9.4.2,9.5, 9.6.3,10.3.1,10.3.2

Why Have Concurrent
Processes?

&8 Better throughput, response time
3 Done via better utilization of resources:
EWhile one process is doing a disk read, another can
be using the CPU or reading another disk.
¥ DANGER DANGER! Concurrency could lead
to incorrectness!
EIMust carefully manage concurrent data access.
HThere’s (much!) more here than the usual OS tricks!

Transactions

¥ Basic concurrency/recovery concept: a
transaction (Xact).

A sequence of many actions which are
considered to be one atomic unit of work.

38DBMS “actions”:
&(disk) reads, (disk) writes

The ACID Properties

B A tomicity: All actions in the Xact happen, or
none happen

BAccount Transfer, Withdraw cash from ATM
38 C onsistency: If each Xact is consistent, and
the DB starts consistent, it ends up consistent
38 I solation: Execution of one Xact is isolated

from that of other Xacts
&Account Withdrawal

8D urability: If a Xact commits, its effects persist
& Electronic Fund Transfer
6

Passing the ACID Test

#Concurrency Control

RGuarantees Isolation
#Logging and Recovery

RGuarantees Atomicity and Durability.
¥We'll do C. C. first:

What is acceptable behavior?

EBWhat problems could arise?

BHow do we guarantee acceptable behavior?

Notation

$$T1: Read(At), t:=t+100, Write(A,t),
Read(B,t), t:= t + 300, Write(B,t)

8T2: Read(A,s), s:=s*2, Write(A,s),
Read(B,s), S:=s*2, Write(B,s)

3$T1: R1(A), W1(A), R1(B), W1(B)

$T2: R2(A), W2(A), R2(B), W2(B)

#¥What kind of interleaving makes sense?

I 12
Schedules RA)

WA)

¥ Schedule: An interleaving of actions RE)

from a set of Xacts, where the actions W)
of any 1 Xact are in the original order. R©)

[AIRepresents some actual sequence of
database actions.

BExample: Ry(A), W;(A), Ry(B), W,(B),
R(C), W4(C)

W©)

HIn a complete schedule, each Xact ends in

commit or abort.

3 Initial State + Schedule - Final State

Acceptable Schedules

3 0ne sensible “isolated, consistent” schedule:

[AIRun Xacts one at a time, in a series.

RIThis is called a serial schedule.

BINOTE: Different serial schedules can have different
final states; all are "OK” -- DBMS makes no guarantees
about the order in which concurrently submitted Xacts
are executed.

38 Serializable schedules:

HFinal state is what some serial schedule would have
produced.

EAborted Xacts are not part of schedule; ignore them for
now (they are made to "disappear’ by using logging).

10

Serializability

$100 from | interest to
Violations s
R(A)
#Two actions may conflict when 2 W(A)
xacts access the same item: |77 R(A)
38 Dirty Read (WR Conflict) W(A)

transfer

add 6%

Result is not equal to any sefi
execution! K Y Database is R(B)
inconsistent! W(B)
NIT2 reads what T1 wrote, bu
shouldn't have!! Commit
[IT1 still active! R(B)
W(B)

Commit

11

Example: Dirty Read

¥T1: Transfer $100 from A to B
#8T2: Increment A and B by 6%
8 Consider schedule

$R1(A) W1(A) R2(A) R2(B) W2(A) W2(B)
R1(B) W1(B)

Serializability
Violations (Contd.)

¥Unrepeatable Read (RW Conflict)

TL R(A), R(A), C
T2 R(A), W(A), C

¥Lost Update (WW Conflict)

T W(A), W(B), C
T2 W(A), W(B), C

Examples: Unrepeatable
Read/Lost Update

#¥Unrepeatable Read
[AIT1: Increment A; T2: Decrement A
EIR1(A) R2(A) W1(A) W2(A)

¥8Lost Update/Blind Write
[|IT1: Set salary of A,B to $10000
[IT2: Set salary of A,B to $30000
HEW1(A) W2(A) W2(B) W1(B)

Checking for Serializability

3 Conflict: A pair of consecutive actions in a
schedule such that
HIf their order is changed, then at least one of the
transactions may change
3 Non Conflicting Swaps
HUnless actions within the same transaction
EUnless actions on the same object

EUnless one of the actions is a Write
WW: Wi(X), Wj(X)
XRW: Ri(X), Wj(X)

Conflict Serializability

¥ Guarantees serializability

32 schedules are conflict equivalent if:
Hthey have the same lists of actions, and
Heach pair of conflicting actions is ordered in the same
way.
3 A schedule is conflict serializable if it is conflict
equivalent to a serial schedule.

&INote: Some serializable schedules are not conflict
serializable!

Example

#Example 9.6 from Text

®R1(A), W1(A), R2(A), W2(A), R1(B),
W1(B), R2(B), W2(B)

Example

3All serializable schedules do not need to
be conflict serializable

$Page 478 of Text
$S1: WI(Y), W1(X), W2(Y), W2(X), W3(X)
$8S2: W1(Y), W2(Y), W2(X), W1(X), W3(X)

Test for Conflict Serializability:
Precedence Graph

3 A Precedence (or Serializability) graph:
&INode for each committed Xact.
&Arc from Ti to Tj if there is an action of Ti precedes

and “conflicts” with an action of Tj
XIAi before Aj

XAi and Aj involve the same database element
XIEither Ai or Aj is a WRITE
#Theorem 1: A schedule is conflict serializable iff
its precedence graph is acyclic.

Example: Precedence
Graph

#T1 transfers $100 from A to B, T2 adds
6%
IR, (A), W;(A), Ry(A), W,(A), Ry(B), W,(B),
Ry(B), Wy(B)

N

W @

Example: Precedence
Graph

$R1(A), W1(A), R2(A), W2(A), R1(B),
W1(B), R2(B), W2(B)
3¥]Is it conflict serializable?

Isolation Level

& Captures visibility across transactions
& Correct/Strongest Isolation Level
[RSerializable
HImplemented through conflict serializability
XITested using precedence graph
3 Weaker Isolation level
EDirty Read (RW)
EUnrepeatable Read (WR)
3 Choice of isolation level exposed through SQL
&IDiscussed later in the lecture

Implementation of
Serializability

Locking

& Concurrency control usually done via locking.
¥ Lock info maintained by a “lock manager”:
RStores (XID, RID, Mode) triples.
XIMode O {S,X}
XIS for readers; X for writers
3 Steps
HAcquire Lock
[XIIf a Xact can't get a lock, it is suspended on a wait queue
Release Lock

3 This is a simplistic view

Granting Lock Requests:
Lock Compatibility

LOCK REQUESTED
-1S | X
VoY
S|V |V

ormI XOO0Or
<<

Two-Phase Locking (2PL)

$82PL:

HIf T wants to read an object, first obtains an
S lock.

HIf T wants to modify an object, first obtains X
lock.

HIIf T releases any lock, it can acquire no new
locks!

¥ Locks are automatically obtained by DBMS.
¥ Guarantees serializability

Growing and Shrinking
Phases of 2PL

3 lock point
No. of Locks >
f's;lrinking

phase
growing phase

Time

Strict 2PL

38Strict 2PL:

|IIf T wants to read an object, first obtains an
S lock.

|IIf T wants to modify an object, first obtains X
lock.

Hold all locks until end of transaction;
¥Guarantees serializability)
#0

locks

Time 28

Conflict Serializability &
2PL

#Theorem 2: 2PL ensures that the
precedence graph of the schedule
will be acyclic
BGuarantees conflict serializability (and

serializability)

38Strict 2PL improves on this by ensuring
recoverable schedules
[More on Recovery in the next lecture

Example

$T1: R1(A), R1(B), W1(B)

$T2: R2(A), R2(B)

¥Schedule:

$8S1(A), R1(A), S2(A), R2(A), S2(B), R2(B),
X1(B)-denied, U2(A), U2(B), X1(B), R1(B),
W1(B), U1(A), U2(B)

Deadlocks

3Deadlock: A set of lock requests waiting
for each other

F8System intervention necessary
382PL cannot prevent deadlocks

3 Break deadlock by aborting one of the
transactions

Example

3 Consider the sequence of actions:
AR1(X) R2(Y) W2(X) W1(Y)

Detecting Deadlock

¥ Timeout

3 Graph-Based Detection (Chapter 10.3.1-.2)
Build a waits-for graph

XINode = Transaction

XIAdd Edge = Waiting situation; edge(T1,T2) if T1 is waiting
on a lock held by T1

XIDelete Edge = Unblocking

XICycle = Deadlock

XICheck periodically for cycles

$Example: R1(X) R2(Y) W2(X) W1(Y)

The Phantom Problem

#T1 locks all pages containing sailor records
with rating = 1, and finds oldest sailor (say,
age = 71).

¥ T2 inserts a new sailor; rating = 1, age = 96.

T2 deletes oldest sailor with rating = 2 (and,
say, age = 80), and commits.

#T1 now locks all pages containing sailor
records with rating = 2, and finds oldest (say,
age = 63)

Phantom Problem: Analysis

#The schedule is not serial but 2PL would allow
such a schedule?

#T1 implicitly assumes that it has locked the set
of all sailor records with rating = 1.

EAssumption only holds if no sailor records are
added while T1 is executing!

HThe sailor with rating 1, age 96 is a phantom tuple
3 Observation

HEnsure that the “right” objects are locked

HE.g., use predicate locks

&INo change in 2PL needed

Implementing Locking

3Needs to execute Lock and Unlock as
atomic operations

¥Needs to be very fast ~100 instructions

38Lock Table

RlLow-level data structure in memory (not SQL
Table!)

HImplemented as a hash table

Issues in Managing Locks

FMulti-granularity locking
HConcurrency v.s. locking overhead
HIntention locks on higher-level objects
HLock Escalation

FHot spots
EAMinimize lock duration

SQL-92 Syntax for
Transactions

FStart Transaction: No explicit statement.
Implicitly started
IBy a SQL statement
HITP monitor (agents other than application
programs)
¥End Transaction:
®By COMMIT or ROLLBACK
[~IBy external agents

SQL-92: Setting the
Properties of Transactions

$8SET TRANSACTION
B[READ ONLY | READ WRITE]
ISOLATION LEVEL

[READ UNCOMMITTED | SERIALIZABLE |
REPEATABLE READ | READ COMMITTED]

RIDIAGNOSTICS SIZE
Value_Specification

Explanation of Isolation
Levels

¥ Read Uncommitted
RICan see uncommitted changes of other transactions
EIDirty Read, Unrepeatable Read
E®IRecommended only for statistical functions

¥ Read Committed
HCan see committed changes of other transactions
&INo Dirty read, but unrepeatable read possible
HAcceptable for query/decision-support

¥ Repeatable Read
&INo dirty or unrepeatable read
EIMay exhibit phantorn phenomenon

3 Serializable a0

Implementation of
Isolation Levels

ISOLATION DIRTY UNREPEATABLE PHANTOM IMPLEMENTATION

LEVEL READ READ
uncommited| Y Y Yo e
St | N Y[y [
Resz:t;’sb'e N N Y Strict 2PL on data
serializable | N N N | i o precict osking)

41

Summary of Concurrency
Control

& Concurrency control key to a DBMS.

¥ Transactions and the ACID properties:

|1 handled by concurrency control.
&A & D coming soon with logging & recovery.

3 Conflicts arise when two Xacts access the
same object, and one of the Xacts is
modifying it.

& Serial execution is our model of correctness.

42

Summary of Concurrency
Control (Contd.)

3 Serializability allows us to “simulate” serial
execution with better performance.

3 2PL: A simple mechanism to get serializability.

3 Lock manager module automates 2PL
ALock table is a big main-mem hash table

3 Deadlocks are possible, and typically a
deadlock detector is used to solve the
problem.

43

